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Abstract

Mean reverting processes are often used to model commodity prices in real options
or to price financial derivatives. Given a specified model, estimating model parameters,
based on on observations collected at arbitrary times, can be done using a variety of
methods including regression and moment matching. When parametric specification
is highly trusted, Maximum-likelihood is the method of choice, especially if likelihood
functions are explicitly available. The Ornstein-Uhlenbeck mean-reverting process is a
continuous time process that has an explicit likelihood function that can be maximized
to obtain maximum likelihood estimates. While the theory assures us of asymptotic
convergence, numerical estimation is sensitive to solver techniques. This work compares
a couple ways of obtaining maximum-likelihood estimates for an Ornstein-Uhlenbeck
mean-reverting model based on samples obtained at arbitrary (even random) points in
time.
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1 Introduction

A mean-reverting Ornstein-Uhlenbeck process Xt with parameters µ, θ, σ is characterized
by the stochastic differential equation

dXt = θ (µ−Xt) dt+ σ dB(t) (1)

where Bt is standard Brownian motion and X0 = x0. It can be shown that Xt is normally
distributed (see appendix A) with

EXt = µ+ (x0 − µ) e−θ t

and

varXt =
σ2

2 θ

(
1− e−2 θ t

)
.
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2 Maximum likelihood-estimation

Given n+1 samples x = {x0, x1, . . . , xn} corresponding to times t0, t1, . . . , tn, the unknown
parameter vector Θ = [θ, µ, σ] can be estimated using maximum likelihood. Note that the
samples can be collected at arbitrary times in the sense that it is not required that they be
collected at evenly spaced time intervals. Let ∆ti = ti− ti−1 for i = 1, . . . , n, since Xt|xt−1

is normally distributed the log-likelihood function is

L(Θ,x) = −n
2

log

(
σ2

2θ

)
− 1

2

n∑
i=1

log
(

1− e−2 θ∆ti

)
− θ

σ2

n∑
i=1

(
xti − µ−

(
xti−1 − µ

)
e−θ∆ti

)2
1− e−2 θ∆ti

. (2)

Maximum likelihood estimates (MLE’s) are found by solving

max
Θ
L(Θ,x). (3)

From optimization theory it is known that the solution to (3) must satisfy the first order
necessary condition ∂ L

∂ µ (Θ,x) = 0 which implies that at the optimal

µ =
n∑
i=1

xti − xti−1 e
−θ∆ti

1 + e−θ∆ti

(
n∑
i=1

1− e−θ∆ti

1 + e−θ∆ti

)−1

. (4)

Similarly, the first order condition ∂ L
∂ (σ2)

(Θ,x) = 0 must be satisfied, implying that

σ2 =
2θ

n

n∑
i=1

(
xti − µ− (xti−1 − µ)e−θ∆i

)2
1− e−2θ∆i

. (5)

Lastly, the condition ∂ L
∂ θ (Θ,x) = 0 must also hold at the optimal, however, the expression

for ∂ L
∂ θ (Θ,x) is a bit more complicated (see Appendix C) and does not lead to an explicit

solution for θ as was the case for parameters µ and σ2. Nevertheless, the relationships
outlined above will prove useful in designing an algorithm to solve (3). Accordingly, a few
strategies to find our MLE’s will be investigated:

1. Find the parameter set that minimizes the log-likelihood function (2) with a multi-
dimensional numerical solver. The gradient of the log-likelihood function (shown in
Appendix C) helps speed things up.

2. Plug the first order conditions (4) and (5) into the log-likelihood function (2) and
solve a 1-dimensional maximization problem to obtain the MLE estimate θMLE. Then
plug back that solution into (5) and (4) to obtain σMLE and µMLE.
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Solver Options

Multi scipy.optimize.minimize method = ‘L-BFGS-B’,

bounds = ((None, None),

(0.05, None), (0.05, None))

jac = supplied

Scalar scipy.optimize.minimize scalar method = ‘bounded’,

bounds = (0, 10)

Scalar root scipy.root scalar

Table 1: Optimization software and settings

3. Plug the first order conditions (4) and (5) into ∂ L
∂ θ (Θ,x) = 0 and use a root finder to

find θMLE. Then plug back that solution into (5) and (4) to obtain σMLE and µMLE.

While these solution strategies are theoretically equivalent not all of them are equally
practical from the implementation point of view.

Example

Consider a mean-reverting process X as defined in (1) with θ = 1.2, µ = 20, σ = 4 and
x0 = 12. We compare three ML estimation methods for the parameter vector Θ = [µ, θ, σ]:

• Multi: maximizes (2) doing a 3-dimensional search with gradient supplied to the
solver.1

• Scalar: combines (4), (5) and (2) to perform the log-likelihood maximization using a
scalar solver.

• Scalar root: combines (4), (5) to find the root of ∂ L∂ θ (θ) = 0 using a scalar root finder.

Monte Carlo simulation is used to compare the statistical behavior of the estimators
and the performance of each method. Specifically, 10,000 sample paths of the process X
were generated each with 168 steps at intervals ∆i = 1, i = 1, . . . , 168. MLE estimates
are obtained for each sample path using each one of the tested methods. The experiment
was performed in Python 3.9.6 using the solvers of the scipy package. Table 1 shows the
solver configuration options utilized.

The results of the experiment are summarized in Table 2 where it can be seen that
all three methods are essentially equivalent in terms of the statistical properties of their

1A configuration without passing the gradient was also tested. The results are identical to the gradient
supplied search but the run time doubles.
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µ θ σ2

true value 20.00 1.20 16.00

Multi: 55.83 seconds

mean 19.9932 1.2756 16.6517

median 19.9947 1.2332 16.2070

minimum 18.9605 0.6272 8.7389

maximum 20.9328 8.9435 103.5889

standard deviation 0.2709 0.3010 3.5388

Scalar: 18.12 seconds

mean 19.9932 1.2758 16.6532

median 19.9947 1.2330 16.2070

minimum 18.9605 0.6272 8.7388

maximum 20.9328 9.6353 106.3378

standard deviation 0.2709 0.3050 3.5720

Scalar root: 31.05 seconds

mean 19.9932 1.2758 16.6532

median 19.9947 1.2330 16.2070

minimum 18.9605 0.6272 8.7389

maximum 20.9328 9.6354 106.3380

standard deviation 0.2709 0.3050 3.5720

Table 2: Parameter estimate statistics and runtimes by method

corresponding estimators. In fact, for almost every sample path, they all arrive at the same
solution. On the performance side, however, the scalar minimization method is faster than
the others and the easiest to implement.

Panels (a), (b) and (c) in Figure 1 show the empirical estimator distributions corre-
sponding to each parameter. We can see that the mean reversion level µ is the easiest to
estimate and that its empirical distribution is consistent with its asymptotic distribution2

(which is essentially the best possible estimation scenario). Given the size of our sample
paths, the estimators for parameters θ and σ2 are not as well behaved as the estimator for
µ, their variances are patently greater than their asymptotic lower bound.3 Nevertheless,
we can see that on average all estimators tend to be centered around the true value of the

2Let Θ = [µ, θ, σ], under regularity conditions the vector of MLE estimates Θ̂ is asymptotically nor-
mally distributed with mean Θ and covariance (I(Θ))−1 where I(Θ) = −E ∂2L/∂Θ ∂Θ′, see [Greene, 1997].
Appendix C includes expressions for the main diagonal of ∂2L/∂Θ ∂Θ′ and the corresponding expecta-
tions can be calculated with the results included in Appendix B. For example, we have E ∂2L/∂µ2 =
−2θn/σ2(1 − e−θ)/(1 − e−2θ) and E ∂2L/∂σ2 = −n/(2σ4). An expression for E ∂2L/∂θ2 can also be
obtained but it is too long to show here.

3Note that we run a slightly restricted likelihood estimation (see Table 1). It is left to the reader to
evaluate the convenience of doing this and its effects on small sample estimations.
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Figure 1: Parameter estimate histograms and forecast statistics

parameter - as they should! Panel (d) in Figure 1 shows the average and median error
when forecasting Xt 1 to 24 periods beyond the last observation of each sample path as
well as the corresponding 10 and 90 percentile levels.

3 Conclusion

This write-up provides a practical introduction to the Ornstein-Uhlenbeck mean reverting
process and the estimation of its parameters via maximum-likelihood. It contains all the
information required to implement parameter estimation algorithms and to build forecasts.
A key feature of the approach utilized is that it allows for the usage of sample data collected
at arbitrary times without the requirement sampling at equally spaced time intervals. At
a more didactic level, the document includes sufficient math background and appendices
to allow the practitioner to develop model extensions, or refinements to the estimation
algorithms. Finally, it also serves as a good starting point into the study of stochastic
process and their applications and may serve as a stepping stone towards the study of
more general modeling and estimation frameworks.
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Appendix

A Solution to the mean-reverting Ornstein-Uhlenbeck stochas-
tic differential equation (SDE)

Let Xt be defined by the SDE

dXt = θ (µ−Xt) dt+ σ dBt (6)

where Bt is brownian motion and X0 = x0. Let f(t, x) = eθ tx, it follows that d
(
eθ tx

)
=

d f(t, x). Note that ∂f
∂t (t, x) = θeθ tx, ∂f∂x (t, x) = eθ t and ∂2f

∂x2
(t, x) = 0. Applying the Ito

formula (See [Øksendal, 1995, Chapter 4]) we get

d
(
eθ tXt

)
=
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt) = θ eθ tXtdt+ eθ tdXt. (7)

Multiplying (6) by eθ t we get

eθ t dXt = θ eθ t (µ−Xt) dt+ eθ tσ dBt

which together with (7) implies

d
(
eθ tXt

)
= θ eθ tµdt+ eθ tσdBt (8)

and we can write

eθ tXt = X0 +

∫ t

0
θ eθ sµds+

∫ t

0
eθ sσdBs

or equivalently

Xt = X0e
−θ t +

∫ t

0
θ e−θ (t−s)µds+

∫ t

0
e−θ (t−s)σdBs. (9)

The first integral on the right hand side of (9) evaluates to µ (1 − e−θ t) and since Bt is
brownian motions, the second integral is normally distributed with mean zero and variance
equal to E (

∫ t
0 e
−θ (t−s)σdBs)

2. By Ito isometry (See [Øksendal, 1995, Chapter 3]) we have
that

E

(∫ t

0
e−θ (t−s)σdBs

)2

=

∫ t

0

(
e−θ (t−s)σ

)2
ds =

∫ t

0
e−2 θ (t−s)σ2ds

=
σ2

2 θ

(
1− e−2 θ t

)
.

Therefore, given X0 = x0, Xt is normally distributed with

EXt = µ+ (x0 − µ) e−θ t (10)
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and

varXt =
σ2

2 θ

(
1− e−2 θ t

)
. (11)

Similarly, for t > s

cov [Xt, Xs] = E ((Xt − EXt)(Xs − EXs))

= E

((∫ t

0
e−θ (t−u)σdBu

)(∫ s

0
e−θ (s−u)σdBu

))
= σ2e−θ(t+s)E

((∫ t

0
eθ udBu

)(∫ s

0
eθ udBu

))
= σ2e−θ(t+s)

(
E

((∫ s

0
eθ udBu

)2
)

+ E

((∫ t

s
eθ udBu

)(∫ s

0
eθ udBu

)))

= σ2e−θ(t+s)
∫ s

0

(
eθ u
)2
du

=
σ2

2 θ

(
e−θ(t−s) − e−θ(t+s)

)
= e−θ(t−s) varXs. (12)

where the equality on the second to last line follows from Ito isometry and the independence
of the random variablesBt0 , Bt1−Bt0 , Bt2−Bt1 , . . . , Btn−Btn−1 for t0 < t1 < t2 < . . . tn−1 <
tn.

B Some useful quantities

For Xt where dXt = θ (µ−Xt) dt+ σ dBt, Bt is brownian motion and X0 = x0, let

Yti = Xti − µ− (Xti−1 − µ)e−θ∆i (13)

where ∆i = ti − ti−1. Note that

EYti = E (Xti − µ)− e−θ∆iE (Xt−1 − µ)

=
(
µ+ (x0 − µ) e−θ ti − µ

)
−
(
µ+ (x0 − µ) e−θ ti−1 − µ

)
e−θ∆i

= (x0 − µ) e−θ ti − (x0 − µ) e−θ (ti−1+∆i)

= 0 (14)

and

varYti = var
(

(Xti − µ)− e−θ∆i
(
Xti−1 − µ

))
= varXti − 2e−θ∆i cov

(
Xti , Xti−1

)
+ e−2θ∆i var Xti−1

=
σ2

2θ

(
1− e−2θti

)
− 2e−θ∆i

σ2

2θ

(
e−θ∆i − e−θ(ti+ti−1)

)
+ e−2θ∆i

σ2

2θ

(
1− e−2θti−1

)
=

σ2

2θ

(
1− e−2θ∆i

)
, (15)
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where EXt, varXt and cov (Xt, Xs) come from (10), (11) and (12). Since EYti = 0 we
have EY 2

ti = varYti + (EYti)
2 = varYti , hence

EY 2
ti =

σ2

2θ

(
1− e−2θ∆i

)
. (16)

Let Zi = Xti − µ then EZi = (x0 − µ)e−θti and

EZ2
i = E (Xti − µ)2

= EX2
ti − 2µEXti + µ2

= varXti + (EXti)
2 − 2µEXti + µ2

=
σ2

2θ

(
1− e−2θti

)
+ (x0 − µ)2 e−2θti (17)

and similarly

E (Zi−1Yti) = E
((
Xti−1 − µ

) (
Xti − µ−

(
Xti−1 − µ

)
γi
))

= E
((
Xti−1 − µ

)
(Xti − µ)

)
− γiE

(
Xti−1 − µ

)2
= cov

(
Xti−1 , Xti

)
+ EZi−1EZi − γivarXti−1 − γi (EZi−1)2

= (x0 − µ)2 e−θ(ti+ti−1) − (x0 − µ)2 e−2θti−1γi

= 0 (18)

where γi = e−θ∆i .

C Log-likelihood derivatives

We have the log-Likelihood function L(Θ,x,∆), Θ = [µ, θ, σ], x = {Xt0 , . . . , Xtn}, ∆ =
{∆1, . . . ,∆n}, ∆i = ti − ti−1

L(Θ,x) = −n
2

log

(
σ2

2θ

)
− 1

2

n∑
i=1

log
(

1− e−2 θ∆i

)
− θ

σ2

n∑
i=1

Y 2
ti

1− e−2 θ∆i
. (19)

with Yt as defined in (13). Then

∂L
∂ µ

=
2θ

σ2

n∑
i=1

Yti (1− γi)
1− γ2

i

(20)

∂L
∂ θ

=
n

2θ
−

n∑
i=1

∆iγ
2
i

1− γ2
i

+
1

σ2

n∑
i=1

Yti
(
Yti
(
γ2
i − 1

)
+ 2θ∆iγi (Ziγi − Zi−1)

)(
1− γ2

i

)2 (21)

∂L
∂ (σ2)

= − n

2σ2
+

θ

σ4

n∑
i=1

Y 2
ti

1− γ2
i

(22)
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and

∂2L
∂ µ2

= −2 θ

σ2

n∑
i=1

(1− γi)2

1− γ2
i

(23)

∂2L
∂ θ2

= − n

2θ2
+ 2

n∑
i=1

∆2
i γ

2
i(

1− γ2
i

)2 − 4θ

σ2

n∑
i=1

∆2
i γ

2
i Y

2
ti(

1− γ2
i

)2 − 8θ

σ2

n∑
i=1

∆2
i γ

4
i Y

2
ti(

1− γ2
i

)3
+

2θ

σ2

n∑
i=1

∆2
i γiZi−1Yti
1− γ2

i

+
8θ

σ2

n∑
i=1

∆2
i γ

3
i Zi−1Yti(

1− γ2
i

)2 − 2θ

σ2

n∑
i=1

∆2
i γ

2
i Z

2
i−1

1− γ2
i

+
4

σ2

n∑
i=1

∆iγ
2
i Y

2
ti(

1− γ2
i

)2 − 4

σ2

n∑
i=1

∆iγiZi−1Yti
1− γ2

i

(24)

∂2L
∂ (σ2)2 =

n

2σ4
− 2θ

σ6

n∑
i=1

Y 2
ti

1− γ2
i

(25)

where γi = e−θ∆i and Zi = Xti − µ.
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